
Richard Johnson

richardj@microsoft.com



 How can we use the visualization tools we 
currently have more effectively?

 How can the Software Development Lifecycle 
benefit from visualizations? 

 What is the impact of visualizations on our 
software security processes?



 What is visualization?
▪ Information transmission through imagery

 Why is visualization important? 
▪ Visualizations utilize the mind’s most perceptive input 

mechanism

 What are the challenges in visualization?
▪ Create intuitive spatial mappings of non-spatial data
▪ Retain clarity while presenting highly dimensional 

data



 Data Visualization



 Information Visualization



 Concept Visualization



 Strategy Visualization



 Metaphor Visualization



 Problem Space
▪ Program Visualization 
▪ Algorithm Visualization

 Sourcing Data
▪ Static vs Dynamic data
▪ Inaccurate analysis tools

 The goal is always: Reduce Complexity!



 Structural Connectivity
▪ Execution & Data Flow
▪ Class Hierarchies

 State Machine Models
▪ Memory profile
▪ Algorithm Complexity

 Revision History
▪ Age and authorship
▪ Milestones in quality assurance



 Execution tracing
▪ Code coverage
▪ Indirect relationships
▪ Dynamic dependencies

 Memory tracing
▪ Heap management patterns
▪ Object instances
▪ Taint propagation

 Environment



 Attack Surface Area

▪ Dataflow entry points

▪ Privilege boundaries

 Implementation Flaws

▪ Arithmetic flaws

▪ Comparison flaws

▪ Unchecked user input

 Exploitability

▪ Execution environment

▪ Compiler security

▪ Reachability

 History

▪ Code age

▪ Author credibility



 Hierarchical Layout

▪ Layered by order of 
connectedness

▪ Not for highly connected graphs



 Circular

▪ Nodes aligned on circles

▪ Clustering



 Orthogonal

▪ Edges aligned on axes

▪ Clustering



 Force Directed

▪ Spring, Magnetic, and 
Gravitational force

▪ Packing



 Hyperbolic Space 

▪ Clarity on center focus

▪ Packing



 Higher Dimensional Space

▪ Clarity with high connectivity

▪ Multi-level views



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Observe binary interdependencies



 Acquire a method level control flow graph 



 Acquire a method level control flow graph 



 Reduce graph using code coverage data 



 Trace dataflow dependency to discover taint 
propagation



 Use static analysis plugins to derive security 
properties such as GS and SafeSEH



 Use static analysis plugins to derive security 
properties such as GS and SafeSEH



 Analyze non-covered 
paths in tainted 
functions 



 Analyze non-covered 
paths in tainted 
functions 



 Examine source code where correlations 
occur



 Source Code Revision History

▪ History Flow



 Source Code Revision History

▪ History Flow



 State Machine Models

▪ Thinking Machine



 State Machine Models

▪ Thinking Machine



Richard Johnson

richardj@microsoft.com



Richard Johnson

richardj@microsoft.com

http://swiscience/
http://swiscience/

